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The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a
temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent
layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London—van der
Waals interactions, established by gradients in the concentr@mnrsity of solvent molecules. The density
gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The
resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and
solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal
expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry
in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives
rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure
gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The
expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When
these values are compared to those measured in the laboratory, the consistency is better than that found in
previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodif-
fusion cell. The model also allows for the movement of solute in either direction, depending on the relative
values of the solvent and solute Hamaker constants.
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I. BACKGROUND phoresig16]. ThFFF is used primarily to separate and char-
acterize polymers on an analytical scfld], but its ability
In 1856 Ludwig reported on the migration of molecules into measure thermophoresis with high accuracy and precision
response to a temperature gradighijt Nearly a century later has been known since 19708].
this transport process was used by Debye and Bueche to In the first of several systematic studies, we demonstrated
fractionate polymer§2]. Since then a great number of stud- the independence of polymer thermophoresis on chain length
ies have been reported, both theoretical and empirical in naand branching19], as predicted by Brochard and de Gennes
ture, aimed at understanding this complex phenomenof20]. In a subsequent study, the thermophoretic properties
which is referred to by a variety of names, including thermalof polystyrene, polye-methy)styrene, polymethylmethacry-
diffusion, thermodiffusion, thermophoresis, and the Soret eflate, and polyisoprene in several organic solvents was used
fect. As outlined below, our model considers the movemento systematically examine the myriad of existing theories
of mass in a temperature gradient to be a surface drivein the literature[21]. That work clearly demonstrated that
effect, therefore, we prefer the term thermophoresis. polymer-solvent interactions play an important role in
The system designed by Debye and Bueche relied on théhermophoresis.
use of convection currents established by thermophoresis in The independence of polymer thermophoresis on chain
a vertical column to separate polymers with low resolution.length and branching means that a homopolymer chain
Since then, a variety of systems have been designed to mearoves in a temperature gradient with the same velocity as
sure and quantify thermophoresis in the absence of conveeach individual monomer unitmen. As a result, one can
tion. An early method developed for studying thermophore-model polymer thermophoresis using the same approach as
sis is based on the deflection of a laser bef@n6] to  that used for particles, where the mers are initially consid-
monitor mass movement in a temperature gradient. Thermaered to be spherical particles for the sake of simplicity. Sev-
phoresis has also been studied in a thermal [&&, where eral models of particle thermophoresis have been presented
laser beams are used to not only monitor the mass migratiomyver the past few decades. The approach of modeling ther-
but to heat the surrounding fluid. In the technique of forcedmophoresis as a surface driven phenomenon was first con-
Raleigh scattering, two laser beams are used to produce sidered by Ruckenstei22]. Piazza and Guarin23] found
spatially modulated concentration gradient of solute withthe Ruckenstein model to yield qualitative prediction of the
properties governed by thermophoredis-15|. In our labo-  electrostatic contribution to the thermophoresis of charged
ratories we have studied polymer and colloid thermophoresimicelles. In a model presented by MoroZ@®4,25|, particle
using thermal field-flow fractionatioffThFFP. In this tech-  thermophoresis is a result of stresses induced by the redistri-
nique, a temperature gradient applied across the thin dimerution of solutes around a suspended colloid. Bringuier and
sion of a ribbon-shapethomaes cell is used to retard the Bourdon[26] use a purely kinetic approach, beginning with
migration of dissolved or suspended material though the ceBrownian motion and incorporating a temperature-dependent
in a quantifiable manner related to the material's thermointernal energy, which is governed by the interaction of par-
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ticles with their surroundings. The model is in qualitative ined. We have modified the model developed by Teubner, in
agreement with measured thermophoretic behavior of colerder to evaluate the hydrodynamic situation of solvent mol-
loids, including the potential for thermophoresis in both di- ecules moving in the vicinity of solutes during thermophore-
rections. As with other models, however, it cannot be usedis.
for quantitative predictions of particle thermophoresis. Most ThFFF experiments on polymers have been carried
Our approach considers the flow of liquid caused by theout in solvents with low electrical conductivities, where ions
gradient in osmotic pressure within the surface layer of theare not present in appreciable quantities. In such solvents,
particle [27], ignoring (for now) any interaction between only dipole-dipole interactions play a ro[@1]. These in-
mers. Although the thermophoresis of any dissolved solutelude interactions between permanent dipdksesom inter-
can be considered with this approach, we use measuremergstions, those between permanent and induced dip@es
of polymer thermophoresis to check the theory because dfye induction interactionsand those induced spontaneously
the greater availability of such data. In the following discus-(London dispersion interactionsAccording to the Fowkes
sion, the term solute will be used to indicate anything dis-approach31], these dipole-dipole interactions have a com-
solved in a liquid, including the mers in a polymer as well asmon dependence on the distance between dipoles, and may

other low-molecular weight molecules. be written in the following simple form
In the case of colloids and microscopic particles sus-
pended in a liquid, the excess osmotic pressirén the 16A(r )3
surface layer due to the accumulation of solutes)., salts br)=-—3g5 2

and surfactant moleculess often written as

_ — d(X)/KT _ Here,A is the Hamaker constant used in colloid chemistry to
IT=kTco[ e 1], 1) . : ; e .
characterize the potential energy of dipole-dipole interactions
between a solute of radius, and a solvent molecule of
radiusry, or between two solvent molecules,{=rg). The
. . . . closest approach distance.{, between interacting mers
potenpal responsible for solgte accumulation, _asnd; the and solvent molecules in the Fowkes model is approximated
coordinate normal to the particle surface. Combined with th . S :
Y I'min=VImlo- This approximation compensates for a dis-

local temperature-induced pressure gradient in the particl . :
surface layer, this expression also describes the macroscop%ePanCy that occurs at short distances when(Exjs used

pressure gradienkc, VT established in the solvent, even Ea?r:zclz(eeroécfzgtaerﬁaicst fcc)):/new”?;;hg '?ﬁzragtr'%gfgffg?a&gﬂ,eo_
when suspended particles are absent. The aim of this paper is 9 y P P

. . o ments of the monomer and solvent molecules, and on the low
to consider such a macroscopic pressure gradient in calcuk:;\i-nd hiah frequency electric suscentibilities. which govern
tions of solute thermophoretic mobility. 9 N Y P ' g

Equation(1) assumes that the concentraion of solute in“*T0O0 SSPeEon RSy L
the surface layer is low enough that its volume is negligible. P Y

compared to the volume of surrounding solvent molecules'mo five stages(1l) Calculation of the local temperature dis-

This assumption holds for suspensions in which the surfact-rIbUtlon ar_our_1d the solut¢2) Derivation of the local excess
ressure distribution around the solute or the selected solvent

tant or ion concentration does not exceed (301072 M. P ;
In the absence of ions and surfactants, only solvent mol[polecule due to solute-solvent or solvent-solvent interac-
ecules can take part in the accumulation ,process in the forrtr'10ns’ respectively(3) Derivation of the expressions for the

L . : solvent velocity profile around the solute or solvent molecule
of variations in solvent density around the solute. In such

cases, the only volume available for solvent accumulation igue to the local pressure gradient, and the resulting thermo-

the free volume of the solvent. which is 10—20% of thephoretic velocity of the moleculé4) Derivation of the mac-

. . roscopic pressure gradient established in the solvent as a
entire volume occupied by the body of the molecug], as . . .
i ) ; . compensation of the thermophoretic force acting on the sol-
indicated by volume changes associated with melting. Thus . . 2
-yent molecules in the temperature gradi€bt.Derivation of

the concentration of solvent molecules in the surface layer %e general expression for the net velocity of the solute
quite high, and the use of a Boltzmann distribution, as ex- 9 P y '

pressed in Eq(1), is inappropriate. Nevertheless, the local
excess pressure gradient around the solute molecule can act Il. THEORY
as a driving force in solute thermophoresis, and we described
a method for overcoming the limitation of E€l) in a pre-
vious paper[29]. The method is too complex to reiterate  Calculation of the temperature distribution around the sol-
here, and only the resulting equations are summarized belowte is outlined in many papers on particle thermophoresis
In most papers on particle phoresis, the thickness of thée.g., see Ref27]). We discuss the formulation of the prob-
surface layer is assumed to be much smaller than the radiliem and the final results only, considering the molecule to be
of the particle. Such an assumption is not valid for solutesa spherical particle.
which have a size that exceeds that of the solvent molecules It is assumed that the temperature distributions inside and
by several times at most. For particle electrophoresis, Teubsutside the particle T; and T, respectively, as obtained
ner [30] presented a more general approach, in which parfrom the temperature conduction equation, have the follow-
ticles having an arbitrary surface layer thickness were exanming dipole forms:

wherek is Boltzmann’s constant is the temperatures; is
the solute concentration in the bulk liquid, is the surface

A. Temperature distribution around the solute

011201-2



THERMOPHORESIS OF DISSOLVED MOLECULES AND . .. PHYSICAL REVIEW @3, 011201 (2004

T,=VTrcosd, ©) Under steady-state conditions, Ef) is transformed into the
following equation32], which defines the local excess pres-
M sure around the solute based on the condition of local hydro-
Te=To+ViTrcosd+ - cosd. (4)  static equilibrium across the solute surface layer in the direc-
tion perpendicular to the surface

Here, T, is the temperature at the center of the particlées dll ¢ dd
the distance from its cented, is the angle between the radius DI S
vectorr and the outer temperature gradiéit, My is the dx v dx
temperature dipole moment of the particle, 8@d is the
internal temperature gradient in the particle. On the molecul
surface (=r,,), we have the following boundary conditions:

0. (12)

In order to define the local pressure resulting from solute-
%olvent or solvent-solvent interactions, we assume that
changes in the solvent concentration around the solute due to

T=T solvent-solute interactions are low enough to use the unper-

i=Te, (5) enough to _
turbed solvent molecule concentration in solving Edl):

F © m=-- . (12

whered; and 6, are the thermal conductivities of the particle Equation(12) defines the local excess pressure in the solvent
and external liquid, respectively. Equatiof®—(6) give the  mixture due to the presence of the selected molecule and its
complete picture of the temperature distribution around thenteraction with other solvent molecules; solute-solute inter-

mer or other solute molecule. Using the definitidhr  actions are neglected. Using Ed2) we calculate the local

=VT[(1-n)/(n+2)]r}, obtained in calculations, Ed4)  temperature-induced pressure gradient in the solvent around
can also be expressed in the form the solute as

r 1-nr? ar®
r_+_n+2r_2 y (7) VH:_UO VT, (13)
m

Te=To+VTr,cosd

wheren= 6;/6, . For further calculations, it is convenient to where ay is the cubic thermal expansion coefficient of the
write the following expressions for the tangential and radialsolvent, defined as

components of the temperature gradient, respectively: Il
Nvg

) 1-n r%
VTg=—-VyTsind| 1+ nro 3 (89

In principle, the temperature dependence of any parameter
1-nrd contained in Eq(12) could lead to the establishment of a

VJzVTcosﬁ(l—Z——?). (8b)  local pressure gradient around the solute. However, terms
n+2r associated with the temperature dependence of the interac-

, , tion potential are compensated by the respective volume
These expressions are easily converted to the correspondifgce arising in the solvent due to spatial changes of the

expressions for the solvent molecule by the obvious substineraction potential. Therefore, only the temperature depen-

tutionsr y—ro, N=1. dence of the solvent parameters is considered in(E3).
Equation(13) represents the expression for the local tem-
B. Local pressure distribution around the solute perature induced pressure gradient, which will be used to

The concentration of solvent molecules in a force fieldS0!Ve the hydrodynamic problem of solvent flow around the

obeys the convection-diffusion equation, which takes the folSOlute. This expression is not related to any model equation
lowing form for concentrated systerfid2]: of state for the solvent; it contains solvent parameters that

can be independently obtained.
dIl ¢
EV(;S—F U_OV(D} ] ©) C. Flow velocity profile around the solute and solute
thermophoretic velocity

¢ K(¢)
E:V[Bﬂﬁro

Heret is time,  is solvent viscosityK(¢) is the coefficient The flow velocity profile in the solute surface layer is
describing the concentration dependence of the hydrodygefined by the Navier-Stokes equation

namic friction (its concrete form does not require further
consideratioh v, is the specific volume occupied by one nAl=—VII, (15
solvent molecule® is the interaction potential given by Eg.
(2), and ¢ is the volume fraction of solvent, which is related whereu is velocity of the liquid. In solving Eq(15) for a

to the numeric concentratiozy by spherical particle, we use the approach taken by Teubner
[30], which utilizes the generalized reciprocal theorem on the
d=v,Co. (10 invariance of the following integral:
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s - I - contain this parameter cannot exceed about 6% and can be
WLU'U'OISJF WJVU"de: 7' LUU"dSJF W'Jvu‘f’dV- neglected. Thus, the difference in thermal conductivities of
(16) the solute and solvent is not a significant factor in solute
thermophoresis.

Here,S is the outer surface of a moving body,is the outer Ignoring the negligible terms, the solute thermophoretic
volume surrounding this surface, afds the hydrodynamic mobility (thermodiffusion coefficientb'?® arising from the
stress tensor expressed by the components of the flow velotecal pressure gradient, which is defined as the thermo-
ity gradient[33]. The primed and unprimed parameters inphoretic velocity per unit temperature gradient, is expressed
Eq. (16) are interrelated in two separate problems on theas
movement of a given body. The theorem was proven by
Teubner[30] for the case in which only a volume force is 8 aTArfn
acting in a liquid, and the osmotic pressure gradient is ab- bITOC: T 57 . (20

' . ; 27 von
sent. However, the Navier-Stokes equation allows the exter-

nal volume force in a liquid to be interchanged with a pre-gqyation(20) contains two parameters that characterize the
determined “external” pressure gradient. Thus, thegqgye namely, its radius () and the Hamaker constant that
reciprocal theorem can be generalized to situations Wherggfines its interaction with the solvenA). The equation

o_nly the predet_ermined pressure gradient is present in a li9g 5o contains parameters that characterize the solvent: the
uid. We use this generalization and the results in referencg pic thermal expansion coefficient{), the specific vol-

[3(.)]' which relate.s pa.”ic.'e phoresis to the volume _force aNYYme o), and the solvent viscositl). The solvent param-

flwd Yelocny d|str|but.|on n theﬁspace around.a part|cle.mov—eters can be measured independently, and many are tabulated
ing with constant unit velocityJ 1(), wheref is the radius (e.g., see Ref434,35).

vector directed from the particle center to the observation

point, analogous to the Eemperature distribution problem. D. Macroscopic pressure gradient and its contribution to

The velocity distributionU4(F) that corresponds to the thermophoretic velocity

boundary conditiondJ (r=ry)=U, and Ul(r =x)=0, is
defined ag33]

Repeating the considerations leading to Ef), one can
obtain a similar equation for the thermophoretic mobility of

rm) 3 solvent molecules

- o 3rm L L 1
Ul(r):ZT[Uo+no(U0'”o)]+Z ;

8 atAgl

X [Uo—3Mig(Up-g)], (17 T 27 voy

0

(21)

wherely is the unit vector directed along tié, vector and  whereA; is the Hamaker constant for the solvent molecules.
Ay is the unit vector directed along the radius vector. InsteadJnlike the thermophoretic mobility of polymers or other sol-
of the volume force considered in R¢80], we combine the ute molecules, the thermophoretic mobility of the solvent
local excess pressure gradient defined in @@ with the  cannot be observed directly. Nevertheless, it is related to a
temperature gradient distribution defined in E8). Using  situation in which solvent molecules placed on the hot side
the steady-state condition that the sum of the hydrodynamiof the selected solute molecule are at a larger distance than
friction force and the thermophoretic force acting on the par-solvent molecules placed on the cold si@e the case of a
ticle is equal to zero, we obtain the following general exprespositive thermal expansion coefficignBecause the interac-
sion for the thermophoretic velocity'®° related to the local tion with hot-hand and cold-hand molecules is distinct, the

pressure gradient: resulting spatial asymmetry leads to a net force acting on the
solute.
™ * dir . - The specific force acting on unit volume of the solvent, in
loc__ R 2 . . . . . i '
T 6myrp, J; S'nﬁdﬁfrHZT’r dr dT [Us- (VD] which 1k, solvent molecules is contained, can be written as
(18)
6mnroy, o

Next, we substitute expressions for the temperature gradient f= Yo brVT. (22)

and the temperature derivative of the local excess pressure
into Eq.(18). By substituting Eqs(2), (8), (13), and(17) into

Eq. (18) and carrying out some simple but cumbersome in-ln a closed cell, as in the FFF channel, the solvent cannot
d. arrying . P X . movein total, therefore, this specific force must be compen-
tegral calculations, we obtain the following expression for

the thermonhoretic velocity of the solute: sated by a macroscopic pressure gradient. The result of this
P y : process is described by an equation of hydrostatic balance
similar to Eq.(11), which gives the following temperature-

16 a7Ar3 (1 2 n—-1 . : .
loc_ _ —~ LY I induced macroscopic pressure gradient:
U7 37 oy |2 63n+2 VT. (19 pic p 9
Parameterf—1)/(n+2) changes from a value of 1/2 at VHmacro:Mb'lo'VT- (23)
n=0 to 1 asn—o. Therefore, the terms in Eq19) that Vo
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Equation (23) is true only for a closed cell, whereas the TABLE |. Estimation of monomer and solvent radii.
specific volume force given by EqR?2) has the more general
application to any system with a temperature gradient. For Radius(A)
example, in open channels with a Iong'ituqmal temperaturtasolvent or monomer Eq. (33 Eq. (34)
gradient this force can cause various liquid flows, such as
those observed in experiments with thermocapillary motionCyclohexane 7.0 2.8
This force can also contribute to thermoconvection in aBenzene 6.5 2.6
closed cell placed in a gravity field. Toluene 6.9 28
The particle placed in the pressure gradient experiencesihylbenzene 7.3 29
the force expressed as the integral of the pressure on th@ethylethyl ketone 6.6 2.6
particle surface33]. Using this rule in relation to Eq23),  tetranydrofuran 6.4 25
we obtain the following expression for the force acting on 8Ethyl acetate 6.8 27
particle placed in a macroscopic temperature gradient: Styrene 79 29
Um, o
Fmacrg= —67nro—bsVT, (24) . L . . .
Vo istic ratio, is dimensionless and varies with the geometry of

] ] » _ . the molecule. For spherically symmetric molecules, the char-
wherev , is the partial specific volume of the solute. Divid- geteristic ratio is

ing this expression by the hydrodynamic friction coefficient
f=6myr,, for the solute, we obtain the contribution of the
macroscopic pressure gradient to the thermophoretic velocity
of the solute

c
o
<
3
N
3

(30

O W
3 W

r r

o The physical volume of the solutg, is typically considered
oo byVT. (25  to be equal to the partial specific volume, which corresponds
orm to an increase in the liquid volume when a single solute

By combining Eqs(25) and (18), we obtain the net velocity molecule is hypothetically added to this liquid. This ap-

resulting from the local and macroscopic pressure gradientroach is used successfully in the theory of sedimentation
methodq 16]. For the solvent, the specific volume occupied

o by the molecule and the partial specific volume are equiva-
bT) VT. (26)  lent.
Determination of solute hydrodynamic volume, which is
equal to (47/3) r‘:‘1 becomes more complicated with increas-
IIl. MAIN OUTCOMES AND RESULTS ing asymmetry in molecular shape. Most molecules are not,

The polymer thermophoretic mobilitg; is the velocity in fact, spherical. However, many can be approximated by an

per unit temperature gradient, which is obtained by the rear€!lPSe. or by cylinders with an aspect ratio close to unity. In
rangement of Eq(26): such cases, the hydrodynamic radius can be approximated as

half the molecule’s maximal dimension, if we consider the
molecule to be freely rotating in its Browniauiffusional
b$. (27) motion. Consequently, its hydrodynamic volume can be ap-
Volm proximated by a sphere with that radius, and the characteris-
Substituting Eqs(20) and (21) into Eq. (27) we obtain a t'(? ratio can be approximated by E(BO). Fpr molecules
general expression for the thermophoretic mobility of soluteW't.h more ex;reme asymrr_1etry, such as.d|sks or elongated
in a closed cell: ellipsoids, estimates of their hyd_rodynamlc volum_e based on
the volume swept out by a rotating molecule are likely to be

Umlo

macro_ __
ymacro—

Umlo
UT: Ullc_)c_ U_Irpacro: ( bllc_)c_

Uol'm

Uml
loc m' 0
br=h'c— =

/A A2 3 high.
by=— 8 arvApAs m(l_ Um ?f’ 5) (29) For solutes without a large degree of shape asymmetry,
27 wvo7y volm ¥ Ap substitution of Eqs(29) and (30) into Eq. (28) yields
where the following Fowkes approximati¢81] is used for N A 2
the Hamaker constant that characterizes mer-solvent interac- b= — 8 w( 1— 1 /E) (31)
tions: 27 von Ap
A=AA. (290 By comparing Eq(31) to Eg.(20), which considers only the

local pressure gradient as the driving fof@9], it is appar-
Here,A, andA, are the Hamaker constants for the polymerent that our consideration of the macroscopic pressure gradi-
and solvent, respectively. ent in this work is accounted for by a simple correction term
Equation(28) contains the specific volume rationed to the 1—yAg/A,. Next, we consider the impact of this correction
third power of the radius for both solute and solvent mol-term on the agreement between values-ptalculated from
ecules. This ratio, subsequently referred to as the characteihe model and those measured by ThFFF.
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TABLE Il. Hamaker constants used to calculate thermophoretic mobilities.

AverageA,, (erg9 AverageA; (erg9 A=A, (ergs
Polymer or solvent {rangg [38] {rangg [39] [Eq. (29)]
Styrene 8.x10 13
{6.37-9.8¢10 13
Cyclohexane 5210 13 6.5x10713
{4.64-5.%<10"13
Benzene 5810 6.3x10° 18
Toluene 5.%x10° 13 6.5x107 13
{5.3-6.1x 10" 13
Methylethyl ketone 481018 6.1x10° 13
{4.53-4.%K 10713}
Ethyl acetate 4110713 5.8x10 13

The greatest uncertainty in evaluating our proposed modadf the solvent A;) values, so that the evaluation of solvent
lies in the value assigned to the mer radiys, because trends inb; are not complicated by variance associated with
empirical values are not available. In this work we calculatethe use of different methodologies for obtainiAg values.
rm by first estimating the specific volume of the solute as The other solvent parameters required to calculate values

of b were also taken from a common souf8d]; these are
M (32) summarized in Table 1ll. The specific volume occupied by a

Um:dmNa' solvent molecule was calculated by
whereM ,, andd,, are the molecular mass and density of the Mg
mer andN, is Avagadro’s number. We approximate the den- vO:dONa’ (35

sity of the mer by the density of liquid monomer. Next the
radiusr , is calculated using a model that relates the specifiavhereM , andv are the molecular weight and density of the

volume occupied by one molecule to its radius. In R28],  solvent, respectively. Using the data from Tables I-Ill and
we used the state equation for a hexagonal crystal consistirgq. (31), values of the thermophoretic mobilities for polysty-
of closely packed spheres rene in the various solvents were calculated; these are sum-

marized in Table IV. Thermophoretic mobilities calculated
using mer radii estimated by E¢83) and(34) are labeled in
Table IV asbT® and bT", respectively. For comparison,

) ) Table IV also contains thermophoretic mobilities calculated
Equation (33) corresponds to the closest possible sphergsing Eq.(21), i.e., without considering the macroscopic

packing of solvent molecules. When this equation was usefressure gradient. Values calculated by E2{) are labeled
in Eq. (20) (i.e., without considering the temperature inducedyloc, max ¢ Eq. (33) was used to estimate,, and bIToc,min if

macroscopic pressure gradigntled to an overestimation of Eq. (34) was used forr,. Finally, Table IV includes the

the thermophoretic mobilities. In fact, values calculated byvalues ofo; measured by ThFFES). Values ofby calculated
this approach hgve _exceeded measure_d v alues by as .mUChL%?ng Eq.(T33) for r,, are about six times IargTer than those
tenfold [36]: This discrepancy was e||m|_nated by using 4 calculated using Eq34). This range in values demonstrates
stat(_a equation that corresponds to a cubic crystal of spher(?ﬁe importance of an accurate mer radius in the calculation of
[37: thermophoretic mobilities.
vo=8r3. (34) Note that each of the values measured by ThFFF lies
m within the range of calculated values, provide the macro-

Table | compares the values calculated for the radius of a
styrene mer, as well as the radii for several solvents, usin%1
Eq. (33) versus Eq(34). The lower values obtained with Eq.
(34) translate into a sixfold decrease in the values of the
calculated thermophoretic mobilities.

Table Il summarizes the Hamaker constants used in cal-

Um=—F%—- (33

TABLE lll. Solvent parameters used to calculate thermophoretic
obilities.

aT n MO do vo><1022
Solvent (K™Y (P (g/moh) (gem®)  (cnP)

culating thermophoretic mobilities. Individual values are re-Cyclohexane  0.0012 0.98 84 0.78 1.79
ported for styreneA,) and each of several solventddj in Benzene 0.0012 0.65 78 0.89 1.45
which the thermophoretic mobility of polystyrene was mea-Toluene 0.0011 055 92 0.87 1.75
sured in the laboratory. Also reported in Table II are thewethylethyl  0.0012 0.40 72 0.80 1.49

Hamaker constantsd) for each styrene-solvent pair, as cal- ketone

culated from EQ.(29). A range of A, and A values are  Ethyl acetate  0.0014  0.40 38 0.90 1.62

reported in the literature. We used a common source for all
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TABLE IV. Summary of calculated and measured values of theequivalent to that of the solute. Consider, for example, sol-
thermophoretic mobilities for polystyrene in several solvents.

Thermophoretic mobilitypx 10® (cnm?s 1K™ 1)

vent molecules that form clusteteligomers. If we repre-
sent the solvent oligomers as rigid rods suspended in a liquid
consisting of monomers with,,<v,, then Eq.(28) yields

Solvent Calculated values the following value for the thermophoretic mobility:
loc, min loc, max min max
ThFFF b b'e by b 8 arAy2 |
Cyclohexane 6.6 22 135 b=— 57 von (rod-shaped solvent oligomers (37)
10.8 67.5
Benzene 4.1 25.6
8.9 19.4 1218 IV. CONCLUSIONS
Toluene 3.4 21.2 The model developed here for polymer and molecule ther-
10.3 211 132.8 mophoresis takes the hydrodynamic approach similar to that
Methylethyl 72 448 recently proposed for suspended particles and polymers
ketone 135 29.9 186.6 [27,29. These models are based on the slip flow of liquid
Ethyl acetate 85 533  around the surface of a dilute component either dissolved or
11.6 30.4 190.3

suspended in the liquid. The slip flow is induced by a pres-

sure gradient, which is established by the temperature depen-
dence of the solvent parameters. The difference between dis-
. . . solved polymers and suspended particles lies in the source of
is used. By contrast, all values dit™, which consider only 4 |oca| pressure gradient. With suspended particles, the os-
the local excess pressure gradient, are 2-3 times larger thafiic pressure gradient is produced by a gradient in the con-

the measured values. In principle, the correct mer radius caunration of dissolved solutes near the comparatively large

be calculated from values dfy measured by ThFFF data, naricle surface. In polymer or molecular solutions, the pres-

since all other parameters are independently obtained. Unfol, .o gradient is produced solely by a temperature-related gra-

tunately, the uncertainty in the Hamaker constants makegient in the concentration of solvent molecules. The resulting

such an approach impractical. On the other hand, one couldy fioy is strong enough to induce thermophoresis of the
measure mer radii by light scattering from the monomer so,ars or molecules in pure solvents.

lution, thermophoretic mobility by ThFFF, and use the infor-
mation to calculate Hamaker constants in a new way.

scopic pressure gradient is taken into accduet, Eq.(31)
loc

The resulting expression for the thermophoretic mobility
X ) X ) of the solute is based on a mathematical procedure developed
Equation(31) predicts a change in the sign of the thermo- yq\iously for modeling electrophoresis. By applying the
phoretic mobility (thermodiffusion coefficientwhen a mol- g5 me procedure to calculations of the solvent thermophoretic

ecule is placed in a solvent with a high Hamaker constanty,qpijity in a closed cell with no convection, a volume force
such thas>A,. For polystyrene, where the Hamaker con- ¢ is”compensated by a macroscopic pressure gradient is

stant is high, this possibility is rather exotic, but fo_rlgolypro- derived. The thermophoretic movement of the solute mol-
pylene oxide with a Hamaker constant of 3880 " erg  gcyle is a net force from the combined action of the local

[31], a negative thermophoresigiovement toward the hot pressyre gradient around the molecule and the force caused
wall) is possible in several organic solvents. Note that in OUlhy the macroscopic pressure gradient.

model, negative thermophoresis arises from a competition Compared to values measured by ThFFF, thermophoretic
between the local _tempergture-induced pressure gradient dWsobilities calculated by the model are 2—10 times larger
to solute-solvent interactions, and a macroscopic pressuignen only the local pressure gradient is considered. By con-
gradient due to solvent-solvent interactions. When the lattefras; the range of predicted values bracket the experimental
interactions are stronger, negative thermophoresis is 0okjg|yes when both the local and macroscopic pressure gradi-
served. , , o ents are considered. Variations within the range are due to
Finally, we consider an interesting situation with solute ncertainties in the estimations of molecular radii. When ra-
molecules that have more extreme shapes, such as that o4 are chosen so that calculated values of the thermophoretic

disk or elongated ellipsoid. For these molecules, the specifig,gpilities match those measured in the laboratory, the radii
volume v, will be significantly smaller than the volume of g.e similar for the different solvents examined.

solvent swept out by the freely rotating molecule. In a pro- - the “thermophoretic” force responsible for the macro-
late eIhpssgld, for example, with transverse radiys the  gcopic pressure gradient may introduce significant correc-
ratio v, /17, can be written asr(r/r,)?. From Eq.(28), the  tions in the general understanding of thermoconvection and
general equation for the thermophoretic mobility of such solthermocapillary motion. Finally, the competition between lo-

utes is cal and macroscopic gradients can result in negative molecu-
8 A2 3ir\2 /A lar thermophoresis in solvents whose Hamaker constants are
_ S @A m| 9Tt [As e higher than that of the solute.
b= 27 von 1 Z ( fm) AJ (prolate ellipsoidl.
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