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Thermophoresis of dissolved molecules and polymers:
Consideration of the temperature-induced macroscopic pressure gradient
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The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a
temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent
layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London–van der
Waals interactions, established by gradients in the concentration~density! of solvent molecules. The density
gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The
resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and
solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal
expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry
in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives
rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure
gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The
expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When
these values are compared to those measured in the laboratory, the consistency is better than that found in
previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodif-
fusion cell. The model also allows for the movement of solute in either direction, depending on the relative
values of the solvent and solute Hamaker constants.

DOI: 10.1103/PhysRevE.69.011201 PACS number~s!: 66.10.Cb
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I. BACKGROUND

In 1856 Ludwig reported on the migration of molecules
response to a temperature gradient@1#. Nearly a century later
this transport process was used by Debye and Buech
fractionate polymers@2#. Since then a great number of stu
ies have been reported, both theoretical and empirical in
ture, aimed at understanding this complex phenome
which is referred to by a variety of names, including therm
diffusion, thermodiffusion, thermophoresis, and the Soret
fect. As outlined below, our model considers the movem
of mass in a temperature gradient to be a surface dr
effect, therefore, we prefer the term thermophoresis.

The system designed by Debye and Bueche relied on
use of convection currents established by thermophores
a vertical column to separate polymers with low resolutio
Since then, a variety of systems have been designed to m
sure and quantify thermophoresis in the absence of con
tion. An early method developed for studying thermopho
sis is based on the deflection of a laser beam@3–6# to
monitor mass movement in a temperature gradient. Ther
phoresis has also been studied in a thermal lens@7,8#, where
laser beams are used to not only monitor the mass migra
but to heat the surrounding fluid. In the technique of forc
Raleigh scattering, two laser beams are used to produ
spatially modulated concentration gradient of solute w
properties governed by thermophoresis@9–15#. In our labo-
ratories we have studied polymer and colloid thermophor
using thermal field-flow fractionation~ThFFF!. In this tech-
nique, a temperature gradient applied across the thin dim
sion of a ribbon-shaped~Thomaes! cell is used to retard the
migration of dissolved or suspended material though the
in a quantifiable manner related to the material’s therm
1063-651X/2004/69~1!/011201~8!/$22.50 69 0112
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phoresis@16#. ThFFF is used primarily to separate and ch
acterize polymers on an analytical scale@17#, but its ability
to measure thermophoresis with high accuracy and preci
has been known since 1970@18#.

In the first of several systematic studies, we demonstra
the independence of polymer thermophoresis on chain len
and branching@19#, as predicted by Brochard and de Genn
@20#. In a subsequent study, the thermophoretic proper
of polystyrene, poly~a-methyl!styrene, polymethylmethacry
late, and polyisoprene in several organic solvents was u
to systematically examine the myriad of existing theor
in the literature@21#. That work clearly demonstrated tha
polymer-solvent interactions play an important role
thermophoresis.

The independence of polymer thermophoresis on ch
length and branching means that a homopolymer ch
moves in a temperature gradient with the same velocity
each individual monomer unit~mer!. As a result, one can
model polymer thermophoresis using the same approac
that used for particles, where the mers are initially cons
ered to be spherical particles for the sake of simplicity. S
eral models of particle thermophoresis have been prese
over the past few decades. The approach of modeling t
mophoresis as a surface driven phenomenon was first
sidered by Ruckenstein@22#. Piazza and Guarino@23# found
the Ruckenstein model to yield qualitative prediction of t
electrostatic contribution to the thermophoresis of charg
micelles. In a model presented by Morozov@24,25#, particle
thermophoresis is a result of stresses induced by the red
bution of solutes around a suspended colloid. Bringuier a
Bourdon@26# use a purely kinetic approach, beginning wi
Brownian motion and incorporating a temperature-depend
internal energy, which is governed by the interaction of p
©2004 The American Physical Society01-1
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ticles with their surroundings. The model is in qualitati
agreement with measured thermophoretic behavior of
loids, including the potential for thermophoresis in both
rections. As with other models, however, it cannot be u
for quantitative predictions of particle thermophoresis.

Our approach considers the flow of liquid caused by
gradient in osmotic pressure within the surface layer of
particle @27#, ignoring ~for now! any interaction between
mers. Although the thermophoresis of any dissolved so
can be considered with this approach, we use measurem
of polymer thermophoresis to check the theory because
the greater availability of such data. In the following discu
sion, the term solute will be used to indicate anything d
solved in a liquid, including the mers in a polymer as well
other low-molecular weight molecules.

In the case of colloids and microscopic particles s
pended in a liquid, the excess osmotic pressureP in the
surface layer due to the accumulation of solutes~e.g., salts
and surfactant molecules! is often written as

P5kTc0@e2 F(x)/kT21#, ~1!

wherek is Boltzmann’s constant,T is the temperature,c0 is
the solute concentration in the bulk liquid,F is the surface
potential responsible for solute accumulation, andx is the
coordinate normal to the particle surface. Combined with
local temperature-induced pressure gradient in the par
surface layer, this expression also describes the macrosc
pressure gradientkc0¹T established in the solvent, eve
when suspended particles are absent. The aim of this pap
to consider such a macroscopic pressure gradient in calc
tions of solute thermophoretic mobility.

Equation~1! assumes that the concentration of solute
the surface layer is low enough that its volume is negligi
compared to the volume of surrounding solvent molecu
This assumption holds for suspensions in which the sur
tant or ion concentration does not exceed (1023– 1022) M .
In the absence of ions and surfactants, only solvent m
ecules can take part in the accumulation process, in the f
of variations in solvent density around the solute. In su
cases, the only volume available for solvent accumulatio
the free volume of the solvent, which is 10–20 % of t
entire volume occupied by the body of the molecules@28#, as
indicated by volume changes associated with melting. Th
the concentration of solvent molecules in the surface laye
quite high, and the use of a Boltzmann distribution, as
pressed in Eq.~1!, is inappropriate. Nevertheless, the loc
excess pressure gradient around the solute molecule ca
as a driving force in solute thermophoresis, and we descr
a method for overcoming the limitation of Eq.~1! in a pre-
vious paper@29#. The method is too complex to reitera
here, and only the resulting equations are summarized be

In most papers on particle phoresis, the thickness of
surface layer is assumed to be much smaller than the ra
of the particle. Such an assumption is not valid for solut
which have a size that exceeds that of the solvent molec
by several times at most. For particle electrophoresis, Te
ner @30# presented a more general approach, in which p
ticles having an arbitrary surface layer thickness were ex
01120
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ined. We have modified the model developed by Teubner
order to evaluate the hydrodynamic situation of solvent m
ecules moving in the vicinity of solutes during thermopho
sis.

Most ThFFF experiments on polymers have been car
out in solvents with low electrical conductivities, where io
are not present in appreciable quantities. In such solve
only dipole-dipole interactions play a role@31#. These in-
clude interactions between permanent dipoles~Keesom inter-
actions!, those between permanent and induced dipoles~De-
bye induction interactions!, and those induced spontaneous
~London dispersion interactions!. According to the Fowkes
approach@31#, these dipole-dipole interactions have a co
mon dependence on the distance between dipoles, and
be written in the following simple form

F~r !52
16A~r mr 0!3

9r 6 . ~2!

Here,A is the Hamaker constant used in colloid chemistry
characterize the potential energy of dipole-dipole interacti
between a solute of radiusr m and a solvent molecule o
radiusr 0 , or between two solvent molecules (r m5r 0). The
closest approach distance (r min) between interacting mer
and solvent molecules in the Fowkes model is approxima
by r min5Ar mr 0. This approximation compensates for a d
crepancy that occurs at short distances when Eq.~2! is used
in place of the exact form of the interaction potential. T
Hamaker constant is governed by the permanent dipole
ments of the monomer and solvent molecules, and on the
and high frequency electric susceptibilities, which gove
London dispersion forces@31#.

The derivation of thermophoretic mobility can be divide
into five stages.~1! Calculation of the local temperature dis
tribution around the solute.~2! Derivation of the local excess
pressure distribution around the solute or the selected sol
molecule due to solute-solvent or solvent-solvent inter
tions, respectively.~3! Derivation of the expressions for th
solvent velocity profile around the solute or solvent molec
due to the local pressure gradient, and the resulting ther
phoretic velocity of the molecule.~4! Derivation of the mac-
roscopic pressure gradient established in the solvent a
compensation of the thermophoretic force acting on the
vent molecules in the temperature gradient.~5! Derivation of
the general expression for the net velocity of the solute.

II. THEORY

A. Temperature distribution around the solute

Calculation of the temperature distribution around the s
ute is outlined in many papers on particle thermophore
~e.g., see Ref.@27#!. We discuss the formulation of the prob
lem and the final results only, considering the molecule to
a spherical particle.

It is assumed that the temperature distributions inside
outside the particle (Ti and Te , respectively!, as obtained
from the temperature conduction equation, have the follo
ing dipole forms:
1-2
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Ti5¹Tr cosq, ~3!

Te5T01¹iTr cosq1
MT

r 2 cosq. ~4!

Here,T0 is the temperature at the center of the particle,r is
the distance from its center,q is the angle between the radiu
vector rW and the outer temperature gradient¹T, MT is the
temperature dipole moment of the particle, and¹iT is the
internal temperature gradient in the particle. On the molec
surface (r 5r m), we have the following boundary condition

Ti5Te , ~5!

u i

]Ti

]r
5ue

]Te

]r
, ~6!

whereu i andue are the thermal conductivities of the partic
and external liquid, respectively. Equations~3!–~6! give the
complete picture of the temperature distribution around
mer or other solute molecule. Using the definitionMT

5¹T @(12n)/(n12)# r m
3 obtained in calculations, Eq.~4!

can also be expressed in the form

Te5T01¹Trm cosqS r

r m
1

12n

n12

r m
2

r 2 D , ~7!

wheren5u i /ue . For further calculations, it is convenient t
write the following expressions for the tangential and rad
components of the temperature gradient, respectively:

¹Tq52¹qT sinqS 11
12n

n12

r m
3

r 3 D , ~8a!

¹rT5¹T cosqS 122
12n

n12

r m
3

r 3 D . ~8b!

These expressions are easily converted to the correspon
expressions for the solvent molecule by the obvious sub
tutions r m→r 0 , n51.

B. Local pressure distribution around the solute

The concentration of solvent molecules in a force fie
obeys the convection-diffusion equation, which takes the
lowing form for concentrated systems@32#:

]f

]t
5¹H K~f!

6phr 0
FdP

df
¹f1

f

v0
¹FG J . ~9!

Heret is time,h is solvent viscosity,K(f) is the coefficient
describing the concentration dependence of the hydro
namic friction ~its concrete form does not require furth
consideration!, v0 is the specific volume occupied by on
solvent molecule,F is the interaction potential given by Eq
~2!, andf is the volume fraction of solvent, which is relate
to the numeric concentrationc0 by

f5v0c0 . ~10!
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Under steady-state conditions, Eq.~9! is transformed into the
following equation@32#, which defines the local excess pre
sure around the solute based on the condition of local hyd
static equilibrium across the solute surface layer in the dir
tion perpendicular to the surface

dP

dx
1

f

v0

dF

dx
50. ~11!

In order to define the local pressure resulting from solu
solvent or solvent-solvent interactions, we assume t
changes in the solvent concentration around the solute du
solvent-solute interactions are low enough to use the un
turbed solvent molecule concentration in solving Eq.~11!:

P52
F~r !

v0
. ~12!

Equation~12! defines the local excess pressure in the solv
mixture due to the presence of the selected molecule an
interaction with other solvent molecules; solute-solute int
actions are neglected. Using Eq.~12! we calculate the loca
temperature-induced pressure gradient in the solvent aro
the solute as

¹P5
aTF

v0
¹T, ~13!

whereaT is the cubic thermal expansion coefficient of th
solvent, defined as

aT5
] ln v0

]T
. ~14!

In principle, the temperature dependence of any param
contained in Eq.~12! could lead to the establishment of
local pressure gradient around the solute. However, te
associated with the temperature dependence of the inte
tion potential are compensated by the respective volu
force arising in the solvent due to spatial changes of
interaction potential. Therefore, only the temperature dep
dence of the solvent parameters is considered in Eq.~13!.

Equation~13! represents the expression for the local te
perature induced pressure gradient, which will be used
solve the hydrodynamic problem of solvent flow around t
solute. This expression is not related to any model equa
of state for the solvent; it contains solvent parameters
can be independently obtained.

C. Flow velocity profile around the solute and solute
thermophoretic velocity

The flow velocity profile in the solute surface layer
defined by the Navier-Stokes equation

hDuW 52¹P, ~15!

whereuW is velocity of the liquid. In solving Eq.~15! for a
spherical particle, we use the approach taken by Teub
@30#, which utilizes the generalized reciprocal theorem on
invariance of the following integral:
1-3
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hE
S
uW 8ŝ•dSW 1hE

V
uW 8• fWdV5h8E

S
uW ŝ8•dSW 1h8E

V
uW • fW8dV.

~16!

Here,S is the outer surface of a moving body,V is the outer
volume surrounding this surface, andŝ is the hydrodynamic
stress tensor expressed by the components of the flow ve
ity gradient @33#. The primed and unprimed parameters
Eq. ~16! are interrelated in two separate problems on
movement of a given body. The theorem was proven
Teubner@30# for the case in which only a volume force
acting in a liquid, and the osmotic pressure gradient is
sent. However, the Navier-Stokes equation allows the ex
nal volume force in a liquid to be interchanged with a p
determined ‘‘external’’ pressure gradient. Thus, t
reciprocal theorem can be generalized to situations wh
only the predetermined pressure gradient is present in a
uid. We use this generalization and the results in refere
@30#, which relates particle phoresis to the volume force a
fluid velocity distribution in the space around a particle mo
ing with constant unit velocityUW 1(rW), whererW is the radius
vector directed from the particle center to the observat
point, analogous to the temperature distribution proble
The velocity distributionUW 1(rW) that corresponds to th
boundary conditionsUW 1(r 5r m)5uW 0 and UW 1(r 5`)50, is
defined as@33#

UW 1~rW !5
3

4

r m

r
@uW 01nW 0~uW 0•nW 0!#1

1

4 S r m

r D 3

3@uW 023nW 0~uW 0•nW 0!#, ~17!

whereuW 0 is the unit vector directed along theUW 1 vector and
nW 0 is the unit vector directed along the radius vector. Inste
of the volume force considered in Ref.@30#, we combine the
local excess pressure gradient defined in Eq.~13! with the
temperature gradient distribution defined in Eq.~8!. Using
the steady-state condition that the sum of the hydrodyna
friction force and the thermophoretic force acting on the p
ticle is equal to zero, we obtain the following general expr
sion for the thermophoretic velocityUT

loc related to the local
pressure gradient:

UT
loc5

1

6phr m
E

0

p

sinq dqE
r H

`

2pr 2 dr
dP

dT
@UW 1•~¹TW !#.

~18!

Next, we substitute expressions for the temperature grad
and the temperature derivative of the local excess pres
into Eq.~18!. By substituting Eqs.~2!, ~8!, ~13!, and~17! into
Eq. ~18! and carrying out some simple but cumbersome
tegral calculations, we obtain the following expression
the thermophoretic velocity of the solute:

UT
loc52

16

27

aTArm
2

v0h S 1

2
1

2

63

n21

n12D¹T. ~19!

Parameter (n21)/(n12) changes from a value of21/2 at
n50 to 1 asn→`. Therefore, the terms in Eq.~19! that
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contain this parameter cannot exceed about 6% and ca
neglected. Thus, the difference in thermal conductivities
the solute and solvent is not a significant factor in sol
thermophoresis.

Ignoring the negligible terms, the solute thermophore
mobility ~thermodiffusion coefficient! bT

loc arising from the
local pressure gradient, which is defined as the therm
phoretic velocity per unit temperature gradient, is expres
as

bT
loc52

8

27

aTArm
2

v0h
. ~20!

Equation~20! contains two parameters that characterize
solute, namely, its radius (r m) and the Hamaker constant th
defines its interaction with the solvent (A). The equation
also contains parameters that characterize the solvent:
cubic thermal expansion coefficient (aT), the specific vol-
ume (v0), and the solvent viscosity~h!. The solvent param-
eters can be measured independently, and many are tabu
~e.g., see Refs.@34,35#!.

D. Macroscopic pressure gradient and its contribution to
thermophoretic velocity

Repeating the considerations leading to Eq.~20!, one can
obtain a similar equation for the thermophoretic mobility
solvent molecules

bT
052

8

27

aTAsr 0
2

v0h
, ~21!

whereAs is the Hamaker constant for the solvent molecul
Unlike the thermophoretic mobility of polymers or other so
ute molecules, the thermophoretic mobility of the solve
cannot be observed directly. Nevertheless, it is related
situation in which solvent molecules placed on the hot s
of the selected solute molecule are at a larger distance
solvent molecules placed on the cold side~in the case of a
positive thermal expansion coefficient!. Because the interac
tion with hot-hand and cold-hand molecules is distinct, t
resulting spatial asymmetry leads to a net force acting on
solute.

The specific force acting on unit volume of the solvent,
which 1/v0 solvent molecules is contained, can be written

f 5
6phr 0

v0
bT

0¹T. ~22!

In a closed cell, as in the FFF channel, the solvent can
move in total, therefore, this specific force must be compe
sated by a macroscopic pressure gradient. The result of
process is described by an equation of hydrostatic bala
similar to Eq.~11!, which gives the following temperature
induced macroscopic pressure gradient:

¹Pmacro5
6phr 0

v0
bT

0¹T. ~23!
1-4
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Equation ~23! is true only for a closed cell, whereas th
specific volume force given by Eq.~22! has the more genera
application to any system with a temperature gradient.
example, in open channels with a longitudinal temperat
gradient this force can cause various liquid flows, such
those observed in experiments with thermocapillary moti
This force can also contribute to thermoconvection in
closed cell placed in a gravity field.

The particle placed in the pressure gradient experien
the force expressed as the integral of the pressure on
particle surface@33#. Using this rule in relation to Eq.~23!,
we obtain the following expression for the force acting on
particle placed in a macroscopic temperature gradient:

Fmacro526phr 0

vm

v0
bT

0¹T, ~24!

wherevm is the partial specific volume of the solute. Divid
ing this expression by the hydrodynamic friction coefficie
f 56phr m for the solute, we obtain the contribution of th
macroscopic pressure gradient to the thermophoretic velo
of the solute

UT
macro52

vmr 0

v0r m
bT

0¹T. ~25!

By combining Eqs.~25! and~18!, we obtain the net velocity
resulting from the local and macroscopic pressure gradie

UT5UT
loc2UT

macro5S bT
loc2

vmr 0

v0r m
bT

0D¹T. ~26!

III. MAIN OUTCOMES AND RESULTS

The polymer thermophoretic mobilitybT is the velocity
per unit temperature gradient, which is obtained by the re
rangement of Eq.~26!:

bT5bT
loc2

vmr 0

v0r m
bT

0. ~27!

Substituting Eqs.~20! and ~21! into Eq. ~27! we obtain a
general expression for the thermophoretic mobility of sol
in a closed cell:

bT52
8

27

aTAApAsr m
2

v0h S 12
vmr 0

3

v0r m
3 AAs

Ap
D , ~28!

where the following Fowkes approximation@31# is used for
the Hamaker constant that characterizes mer-solvent inte
tions:

A5AApAs. ~29!

Here,Ap andAs are the Hamaker constants for the polym
and solvent, respectively.

Equation~28! contains the specific volume rationed to t
third power of the radius for both solute and solvent m
ecules. This ratio, subsequently referred to as the chara
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istic ratio, is dimensionless and varies with the geometry
the molecule. For spherically symmetric molecules, the ch
acteristic ratio is

v0

r 0
3 5

vm

r m
3 5

4p

3
. ~30!

The physical volume of the solutevm is typically considered
to be equal to the partial specific volume, which correspo
to an increase in the liquid volume when a single sol
molecule is hypothetically added to this liquid. This a
proach is used successfully in the theory of sedimenta
methods@16#. For the solvent, the specific volume occupi
by the molecule and the partial specific volume are equi
lent.

Determination of solute hydrodynamic volume, which
equal to (4p/3) r m

3 becomes more complicated with increa
ing asymmetry in molecular shape. Most molecules are
in fact, spherical. However, many can be approximated by
ellipse, or by cylinders with an aspect ratio close to unity.
such cases, the hydrodynamic radius can be approximate
half the molecule’s maximal dimension, if we consider t
molecule to be freely rotating in its Brownian~diffusional!
motion. Consequently, its hydrodynamic volume can be
proximated by a sphere with that radius, and the characte
tic ratio can be approximated by Eq.~30!. For molecules
with more extreme asymmetry, such as disks or elonga
ellipsoids, estimates of their hydrodynamic volume based
the volume swept out by a rotating molecule are likely to
high.

For solutes without a large degree of shape asymme
substitution of Eqs.~29! and ~30! into Eq. ~28! yields

bT52
8

27

aTAApAsr m
2

v0h S 12AAs

Ap
D . ~31!

By comparing Eq.~31! to Eq.~20!, which considers only the
local pressure gradient as the driving force@29#, it is appar-
ent that our consideration of the macroscopic pressure gr
ent in this work is accounted for by a simple correction te
12AAs /Ap. Next, we consider the impact of this correctio
term on the agreement between values ofbT calculated from
the model and those measured by ThFFF.

TABLE I. Estimation of monomer and solvent radii.

Solvent or monomer

Radius~Å!

Eq. ~33! Eq. ~34!

Cyclohexane 7.0 2.8
Benzene 6.5 2.6
Toluene 6.9 2.8
Ethylbenzene 7.3 2.9
Methylethyl ketone 6.6 2.6
Tetrahydrofuran 6.4 2.5
Ethyl acetate 6.8 2.7
Styrene 7.2 2.9
1-5
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TABLE II. Hamaker constants used to calculate thermophoretic mobilities.

Polymer or solvent
AverageAp ~ergs!

$range% @38#
AverageAs ~ergs!

$range% @39#
A5AAsAp ~ergs!

@Eq. ~29!#

Styrene 8.1310213

$6.37– 9.8310213%
Cyclohexane 5.2310213

$4.64– 5.9310213%
6.5310213

Benzene 5.0310213 6.3310213

Toluene 5.7310213

$5.3– 6.1310213%
6.5310213

Methylethyl ketone 4.6310213

$4.53– 4.7310213%
6.1310213

Ethyl acetate 4.17310213 5.8310213
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The greatest uncertainty in evaluating our proposed mo
lies in the value assigned to the mer radiusr m , because
empirical values are not available. In this work we calcul
r m by first estimating the specific volume of the solute as

vm5
Mm

dmNa
, ~32!

whereMm anddm are the molecular mass and density of t
mer andNa is Avagadro’s number. We approximate the de
sity of the mer by the density of liquid monomer. Next th
radiusr m is calculated using a model that relates the spec
volume occupied by one molecule to its radius. In Ref.@29#,
we used the state equation for a hexagonal crystal consis
of closely packed spheres

vm5
pr m

3

6
. ~33!

Equation ~33! corresponds to the closest possible sph
packing of solvent molecules. When this equation was u
in Eq. ~20! ~i.e., without considering the temperature induc
macroscopic pressure gradient!, it led to an overestimation o
the thermophoretic mobilities. In fact, values calculated
this approach have exceeded measured values by as mu
tenfold @36#. This discrepancy was eliminated by using
state equation that corresponds to a cubic crystal of sph
@37#:

vm58r m
3 . ~34!

Table I compares the values calculated for the radius o
styrene mer, as well as the radii for several solvents, us
Eq. ~33! versus Eq.~34!. The lower values obtained with Eq
~34! translate into a sixfold decrease in the values of
calculated thermophoretic mobilities.

Table II summarizes the Hamaker constants used in
culating thermophoretic mobilities. Individual values are
ported for styrene (Ap) and each of several solvents (As) in
which the thermophoretic mobility of polystyrene was me
sured in the laboratory. Also reported in Table II are t
Hamaker constants (A) for each styrene-solvent pair, as ca
culated from Eq.~29!. A range of Ap and As values are
reported in the literature. We used a common source for
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of the solvent (As) values, so that the evaluation of solve
trends inbT are not complicated by variance associated w
the use of different methodologies for obtainingAs values.

The other solvent parameters required to calculate va
of bT were also taken from a common source@34#; these are
summarized in Table III. The specific volume occupied by
solvent molecule was calculated by

v05
M0

d0Na
, ~35!

whereM0 andv0 are the molecular weight and density of th
solvent, respectively. Using the data from Tables I–III a
Eq. ~31!, values of the thermophoretic mobilities for polyst
rene in the various solvents were calculated; these are s
marized in Table IV. Thermophoretic mobilities calculate
using mer radii estimated by Eqs.~33! and~34! are labeled in
Table IV as bT

max and bT
min , respectively. For comparison

Table IV also contains thermophoretic mobilities calculat
using Eq. ~21!, i.e., without considering the macroscop
pressure gradient. Values calculated by Eq.~21! are labeled
bT

loc,max if Eq. ~33! was used to estimater m , andbT
loc,min if

Eq. ~34! was used forr m . Finally, Table IV includes the
values ofbT measured by ThFFF@5#. Values ofbT calculated
using Eq.~33! for r m are about six times larger than thos
calculated using Eq.~34!. This range in values demonstrate
the importance of an accurate mer radius in the calculatio
thermophoretic mobilities.

Note that each of the values measured by ThFFF
within the range of calculated values, provide the mac

TABLE III. Solvent parameters used to calculate thermophore
mobilities.

Solvent
aT

(K21)
h

~cP!
M0

~g/mol!
d0

(g cm23)
v031022

(cm3)

Cyclohexane 0.0012 0.98 84 0.78 1.79
Benzene 0.0012 0.65 78 0.89 1.45
Toluene 0.0011 0.55 92 0.87 1.75
Methylethyl
ketone

0.0012 0.40 72 0.80 1.49

Ethyl acetate 0.0014 0.40 88 0.90 1.62
1-6
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scopic pressure gradient is taken into account@i.e., Eq.~31!
is used#. By contrast, all values ofbT

loc , which consider only
the local excess pressure gradient, are 2–3 times larger
the measured values. In principle, the correct mer radius
be calculated from values ofbT measured by ThFFF data
since all other parameters are independently obtained. Un
tunately, the uncertainty in the Hamaker constants ma
such an approach impractical. On the other hand, one c
measure mer radii by light scattering from the monomer
lution, thermophoretic mobility by ThFFF, and use the info
mation to calculate Hamaker constants in a new way.

Equation~31! predicts a change in the sign of the therm
phoretic mobility~thermodiffusion coefficient! when a mol-
ecule is placed in a solvent with a high Hamaker consta
such thatAs.Am . For polystyrene, where the Hamaker co
stant is high, this possibility is rather exotic, but for polypr
pylene oxide with a Hamaker constant of 3.95310213 erg
@31#, a negative thermophoresis~movement toward the ho
wall! is possible in several organic solvents. Note that in
model, negative thermophoresis arises from a competi
between the local temperature-induced pressure gradien
to solute-solvent interactions, and a macroscopic pres
gradient due to solvent-solvent interactions. When the la
interactions are stronger, negative thermophoresis is
served.

Finally, we consider an interesting situation with solu
molecules that have more extreme shapes, such as tha
disk or elongated ellipsoid. For these molecules, the spe
volume vm will be significantly smaller than the volume o
solvent swept out by the freely rotating molecule. In a p
late ellipsoid, for example, with transverse radiusr t , the
ratio vm /r m

3 can be written asp(r t /r m)2. From Eq.~28!, the
general equation for the thermophoretic mobility of such s
utes is

bT52
8

27

aTASr m
2

v0h F12
3

4 S r t

r m
D 2AAs

Ap
G ~prolate ellipsoid!.

~36!

Thus, nonspherical molecules will undergo thermophore
even in solvents that have Hamaker constants that

TABLE IV. Summary of calculated and measured values of
thermophoretic mobilities for polystyrene in several solvents.

Thermophoretic mobilitybT3108 (cm2 s21 K21)

Solvent Calculated values
ThFFF bT

loc,min bT
loc,max bT

min bT
max

Cyclohexane 6.6 2.2 13.5
10.8 67.5

Benzene 4.1 25.6
8.9 19.4 121.8

Toluene 3.4 21.2
10.3 21.1 132.8

Methylethyl
ketone 13.5 29.9 186.6

7.2 44.8

Ethyl acetate 8.5 53.3
11.6 30.4 190.3
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equivalent to that of the solute. Consider, for example, s
vent molecules that form clusters~oligomers!. If we repre-
sent the solvent oligomers as rigid rods suspended in a liq
consisting of monomers withvm!v0 , then Eq.~28! yields
the following value for the thermophoretic mobility:

bT52
8

27

aTAsr 0
2

v0h
~rod-shaped solvent oligomers!. ~37!

IV. CONCLUSIONS

The model developed here for polymer and molecule th
mophoresis takes the hydrodynamic approach similar to
recently proposed for suspended particles and polym
@27,29#. These models are based on the slip flow of liqu
around the surface of a dilute component either dissolved
suspended in the liquid. The slip flow is induced by a pr
sure gradient, which is established by the temperature de
dence of the solvent parameters. The difference between
solved polymers and suspended particles lies in the sourc
the local pressure gradient. With suspended particles, the
motic pressure gradient is produced by a gradient in the c
centration of dissolved solutes near the comparatively la
particle surface. In polymer or molecular solutions, the pr
sure gradient is produced solely by a temperature-related
dient in the concentration of solvent molecules. The result
slip flow is strong enough to induce thermophoresis of
mers or molecules in pure solvents.

The resulting expression for the thermophoretic mobil
of the solute is based on a mathematical procedure develo
previously for modeling electrophoresis. By applying t
same procedure to calculations of the solvent thermophor
mobility in a closed cell with no convection, a volume forc
that is compensated by a macroscopic pressure gradie
derived. The thermophoretic movement of the solute m
ecule is a net force from the combined action of the lo
pressure gradient around the molecule and the force ca
by the macroscopic pressure gradient.

Compared to values measured by ThFFF, thermophor
mobilities calculated by the model are 2–10 times larg
when only the local pressure gradient is considered. By c
trast, the range of predicted values bracket the experime
values when both the local and macroscopic pressure gr
ents are considered. Variations within the range are du
uncertainties in the estimations of molecular radii. When
dii are chosen so that calculated values of the thermopho
mobilities match those measured in the laboratory, the r
are similar for the different solvents examined.

The ‘‘thermophoretic’’ force responsible for the macr
scopic pressure gradient may introduce significant corr
tions in the general understanding of thermoconvection
thermocapillary motion. Finally, the competition between
cal and macroscopic gradients can result in negative mole
lar thermophoresis in solvents whose Hamaker constants
higher than that of the solute.
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